In this study, different battery types to be used in the conversion of a small and light (600-1000 kg) internal combustion engine vehicle into an electric vehicle were analyzed. The study was conducted to ensure that this vehicle is suitable for urban use and has a range of approximately 100 km. Each battery technology capacity is evaluated to be approximately 15 kWh. While performing the techno-economic analysis of different battery types, it was taken into account that they provide the necessary energy for about 10 years. Seven different battery technologies (lead-acid, gel, Ni-Cd, Li-Ion, LiFePo4, LiPo, Ni-MH) were used for comparison. In analysis; price assessment in US Dollars ($), 10-year investment cost, weight and volume values, weight and volume values required to produce 1 kWh of energy were presented in tables. In addition to these, a review of battery life was made. Finally, the advantages and disadvantages of battery technologies compared to each other are given. As a result of the study, it can be seen that for a 10-year lifetime, the cheapest lead-acid battery technology is 30% cheaper than the next cheapest technology, gel battery technology, and 82% cheaper than the most expensive technology, LiPo technology. It can be seen that LiPo battery technology, which is the lightest in terms of weight, is 85% lighter than gel technology, which is the heaviest technology. In addition, data on cycle life, self-discharge, advantages and disadvantages are presented in tabular form.