Drosophila melanogaster telomeres are composed of two retrotransposons, HeT-A and TART. Drosophila virilis has recently been shown to have telomere-specific TART elements with many of the characteristics of their D. melanogaster homologues. We now report identification of the second telomere-specific retrotransposon, HeT-A, from D. virilis. These results show that HeT-A and TART have been maintaining telomeres in Drosophila for more than the 60 million years that separate D. melanogaster and D. virilis. All Drosophila species and stocks studied have both of these telomeric elements, suggesting that the elements collaborate, an assumption supported by evidence from D. melanogaster that their Gag proteins interact. Although the HeT-A sequence evolves at a high rate, the element retains the unusual structural features that characterize all HeT-A homologues. These features may be involved in the role of HeT-A at the telomere. The Gag protein from HeT-A vir is as much like TART Gag from other species as it is like HeT-A Gag, suggesting that these Gags are evolving under similar constraints, probably to maintain appropriate interactions with host telomeres and possibly to allow collaborative interactions like those seen in D. melanogaster. In addition, we have identified a chimeric element, U vir , carrying a pol coding sequence only distantly related to sequences thus far found in any telomere arrays.T elomeres of eukaryotic chromosomes are composed of long arrays of DNA repeats. In most animals, plants, and unicellular eukaryotes, these repeats are short species-specific sequences (5-10 bp) reverse transcribed onto chromosome ends by the enzyme telomerase. Telomeres in Drosophila melanogaster are a surprising exception to the general type. D. melanogaster telomeres are arrays of repeated sequences but these arrays are produced by successive transpositions of two non-LTR retrotransposons. Rather than successive additions of a telomerase repeat (1), each repeat in these telomeres is a copy of one of the telomeric elements, HeT-A and TART.HeT-A and TART group into the Jockey clade based on the sequences of their coding regions. The Jockey clade contains several of the more abundant retrotransposable elements in the D. melanogaster genome, including Doc, jockey, and X, but HeT-A and TART have several characteristics that set them apart from the other elements. The most obvious difference is the targeting of transposition: HeT-A and TART transpose only onto chromosome ends, whereas the other members of the clade (generally considered parasitic elements) transpose into many parts of the genome but are never found in these telomere regions. This targeting appears to involve Gag proteins because Gags from both HeT-A and TART move efficiently to specific intranuclear sites and associate with chromosome ends, whereas Gags from other members of the clade remain almost entirely in the cytoplasm (2). Another difference is the large amount of noncoding sequence (5Ј and 3Ј UTR) in HeT-A and TART in D. melanogaster and Drosophila y...