An online neutrosophic similarity-based objectness tracking with a weighted multiple instance learning algorithm (NeutWMIL) is proposed. Each training sample is extracted surrounding the object location, and the distribution of these samples is symmetric. To provide a more robust weight for each sample in the positive bag, the asymmetry of the importance of the samples is considered. The neutrosophic similarity-based objectness estimation with object properties (super straddling) is applied. The neutrosophic theory is a new branch of philosophy for dealing with incomplete, indeterminate, and inconsistent information. By considering the surrounding information of the object, a single valued neutrosophic set (SVNS)-based segmentation parameter selection method is proposed, to produce a well-built set of superpixels which can better explain the object area at each frame. Then, the intersection and shape-distance criteria are proposed for weighting each superpixel in the SVNS domain, mainly via three membership functions, T (truth), I (indeterminacy), and F (falsity), for each criterion. After filtering out the superpixels with low response, the newly defined neutrosophic weights are utilized for weighting each sample. Furthermore, the objectness estimation information is also applied for estimating and alleviating the problem of tracking drift. Experimental results on challenging benchmark video sequences reveal the superior performance of our algorithm when confronting appearance changes and background clutters.