In designing a radioisotope, energy-dispersive (proportional counter) x-ray fluorescence spectrometer for elemental analysis of geologic specimens, a theoretical framework has been developed to model instrument response. This model is based upon the fundamental physics of x-ray excitation, absorption, and scattering, and employs the most modern available values of the applicable physical constants. The model includes matrix absorption and enhancement effects. By explicitly including scattering in the model and the measurements, element concentrations can be calculated from the shape alone of the x-ray spectrum and the presence of elements having non-observable fluorescences can be detected.