1959
DOI: 10.1103/physrev.114.383
|View full text |Cite
|
Sign up to set email alerts
|

Elementary Particles in a Finite World Geometry

Abstract: To account for the elementary particles a new physical geometry may be needed. A previous suggestion that this geometry may be finite is followed up by determining the representations of the orthogonal (Lorentzlike) group. Because of the existence of a new type of orthogonality-preserving transformation some of the representations are multiple-valued. A change of value is identified with a gauge transformation and electric charge is recognized as a certain number determining the many-valuedness of the represen… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

1
55
0
1

Year Published

1960
1960
2017
2017

Publication Types

Select...
9

Relationship

0
9

Authors

Journals

citations
Cited by 27 publications
(57 citation statements)
references
References 8 publications
1
55
0
1
Order By: Relevance
“…6, then by Shapiro, 15 Ahmavaara, 1,2 Yahia, 17 Joos, 8 Beltrametti and Blasi, 3 and Nambu. In relation to theoretical alternatives in particle physics, Lorentz transformations over finite fields seem to have been first considered by Coish in Ref.…”
Section: Finite Minkowski Spaces and Statement Of The Theoremmentioning
confidence: 99%
“…6, then by Shapiro, 15 Ahmavaara, 1,2 Yahia, 17 Joos, 8 Beltrametti and Blasi, 3 and Nambu. In relation to theoretical alternatives in particle physics, Lorentz transformations over finite fields seem to have been first considered by Coish in Ref.…”
Section: Finite Minkowski Spaces and Statement Of The Theoremmentioning
confidence: 99%
“…COISH schl/igt eine sehr radikale Abiinderung der Geometrie unserer Raum-Zeit-Welt vor [13]: Die m5glichen Werte der Koordinaten der Punkte unserer Raum-Zeit-Welt sollen nicht den K5rper der reellen Zahlen bilden, sondern nur einen endlichen Zahlen-Ring. Durch geeignete Wahl dieses Zahleniinges kann man erreichen, dass diese Geometrie fª sehr kleine und sehr grosse Entfernungen entscheidend ver~indert wird, aber fª mittlere Entfernungen sehr genahert mit der pseudoeuklidischen Geometrie ª In einer solchen Theorie sind natª infinitesimale Translationen nicht mehr wohldefiniert, deshalb entf/illt Voraussetzung 1. des LEHMAr~r~--KXLL• Aber leider ist die Feldtheorie in einer solchen Geometrie noch nicht vollstiindig entwickelt.…”
Section: Coÿ Verallgemeinerung Der Geometrieunclassified
“…Perhaps the first to consider an approximation between structures over the field of real numbers and structures over a very large finite field were astronomers Kustaanheimo [44,45] and Järnefelt [41]. Motivated by some alternative theories in particle physics, Lorentz transformations over finite fields were considered by many authors: see for example Coish [24], Shapiro [67], Ahmavaara [1][2][3][4], Yahya [72], Joos [42], Beltrametti and Blasi [12,13]. Recently, Foldes [29] derived an approximation result between Lorentz transformations over real numbers and Lorentz transformations over a finite field.…”
Section: Introductionmentioning
confidence: 99%