The toll-like receptors (TLRs) are important components of the respiratory epithelium host innate defense, enabling the airway surface to recognize and respond to a variety of insults in inhaled air. Based on the knowledge that smokers are more susceptible to pulmonary infection and that the airway epithelium of smokers with chronic obstructive pulmonary disease (COPD) is characterized by bacterial colonization and acute exacerbation of airway infections, we assessed whether smoking alters expression of TLRs in human small airway epithelium, the primary site of smoking-induced disease. Microarrays were used to survey the TLR family gene expression in small airway (10th–12th order) epithelium from healthy nonsmokers (n=60), healthy smokers (n=73) and smokers with COPD (n=36). Using the criteria of detection call of present in ≥50%, 6 of 10 TLRs (1, 2, 3, 4, 5 and 8) were expressed. Compared to nonsmokers, the most striking change was for TLR5, which was down-regulated in healthy smokers (1.4-fold, p<10−10) and smokers with COPD (1.6-fold, p<10−11). TaqMan RT-PCR confirmed these observations. Bronchial biopsy immunofluorescence studies showed that TLR5 was expressed mainly on the apical side of the epithelium and was decreased in healthy smokers and smokers with COPD. In vitro, the level of TLR5 downstream genes, IL-6 and IL-8, were highly induced by flagellin in TLR5 high-expressing cells compared to TLR5 low-expressing cells. In the context that TLR5 functions to recognize pathogens and activate innate immune responses, the smoking-induced down-regulation of TLR5 may contribute to smoking-related susceptibility to airway infection, at least for flagellated bacteria.