Characteristics of cadmium (Cd) accumulation and tolerance in Rorippa globosa (Turcz.) Thell., a species with some characteristics of cadmium hyperaccumulation were further investigated and compared with a closely related species, Rorippa islandica. The results showed that there was no phytotoxicity for R. globosa leaves or reduction in biomass when treated with 25 lg Cd g -1 , although the concentration of Cd accumulated in the leaves was up to 218.9 lg Cd g -1 dry weight (DW). On the contrary, Cd toxicity was observed in R. islandica leaves by way of determining changes in fresh weight (FW), malondialdehyde (MDA) level and chlorophyll content while treated with 25 lg Cd g -1 DW. R. globosa had stronger self-protection ability than R. islandica to adapt to oxidative stress caused by Cd. Application of Cd significantly increased the activity of superoxide dismutase (SOD) in leaves, the activity of peroxidase (POD) in roots, and the activity of catalase (CAT) in leaves and roots of R. globosa. By contrast, in R. islandica, the activity of antioxidant enzymes was inhibited or unchanged by various Cd treatments. However, R. globosa leaves had higher activity of antioxidant enzymes such as SOD and POD than that of R. islandica. The antioxidative defense systems in R. globosa might play an important role in Cd tolerance. The Cd treatments significantly induced the synthesis of phytochelatins (PCs) in the two species. Leaf PCs and Cd accumulation by R. globosa were much greater than those by R. islandica, but root PCs and Cd accumulation by R. islandica were much greater than those by R. globosa, suggesting that PCs in leaves may be a biomarker of Cd hyperaccumulation, and the synthesis of PCs may be related to an increase in the uptake of Cd ions into the cytoplasm, not the primary mechanism for Cd tolerance.