Gliomas are highly malignant and invasive tumors lacking clear boundaries. Previous bioinformatics and experimental analyses have indicated that F-box and leucine-rich repeat protein 6 (FBXL6), a protein crucial for the cell cycle and tumorigenesis, is highly expressed in certain types of tumors. The high expression level of FBXL6 is reported to promote tumor growth and adversely affect patient survival. However, the molecular mechanism, prognostic value and drug sensitivity of FBXL6 in glioma remain unclear. To address this, the present study analyzed FBXL6 expression in gliomas, utilizing data from The Cancer Genome Atlas and Chinese Glioma Genome Atlas databases. Analysis of FBXL6 mRNA expression levels, combined with patient factors such as age, sex and tumor grade using Kaplan-Meier plots and nomograms, demonstrated a strong correlation between FBXL6 expression and glioma progression. Co-expression networks provided further insights into the biological function of FBXL6. Additionally, using CIBERSORT and TISDB tools, the correlation between FBXL6 expression correlation tumor-infiltrating immune cells and immune genes was demonstrated to be statistically significant. These findings were validated by examining FBXL6 mRNA and protein levels in glioma tissues using various techniques, including western blot, reverse transcription-quantitative PCR and immunohistochemistry. These assays demonstrated the role of FBXL6 in glioma progression. Furthermore, drug sensitivity analysis demonstrated a strong correlation between FBXL6 expression and various drugs, which indicated that FBXL6 may potentially act as a future promising therapeutic target in glioma treatment. Therefore, the present study identified FBXL6 as a diagnostic and prognostic marker in patients with gliomas and highlighted its potential role in glioma progression.