Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Flexible all‐in‐one electrochromic fabrics (AECF) have attracted attention for application in wearable intelligent electronics. However, undifferentiated and disordered ion transport within the AECFs usually cause a slow transfer kinetics of reactive ions and thus restrict their electrochromic performance. Here, a new strategy is proposed to optimize active ion transport based on a well‐designed anion‐selective ion conductor (ASIC) for boosting the anionic AECF. The ASIC is developed by the interaction difference between ions and electronegative functional groups in the fabric substrate. Benefiting from cation immobilization and free anion transport, the ASIC exhibits both high anion transference number (0.75) and ionic conductivity (2.41 × 10−3 S cm−1) at room temperature. Such optimization of anion transport dynamics enhances the efficiency of the electrochromic redox reaction in the polyaniline‐based anionic AECF, contributing to a significant improvement of the overall electrochromic performance. Based on the switchable earth yellow and dark green discoloration, the AECF is further integrated into a camouflage uniform, achieving dynamic environment adaptation in deserts or forests. This work is anticipated to provide some fresh ideas for developing functional ion conductors of electrochromic fabrics toward applications in wearable intelligent electronics.
Flexible all‐in‐one electrochromic fabrics (AECF) have attracted attention for application in wearable intelligent electronics. However, undifferentiated and disordered ion transport within the AECFs usually cause a slow transfer kinetics of reactive ions and thus restrict their electrochromic performance. Here, a new strategy is proposed to optimize active ion transport based on a well‐designed anion‐selective ion conductor (ASIC) for boosting the anionic AECF. The ASIC is developed by the interaction difference between ions and electronegative functional groups in the fabric substrate. Benefiting from cation immobilization and free anion transport, the ASIC exhibits both high anion transference number (0.75) and ionic conductivity (2.41 × 10−3 S cm−1) at room temperature. Such optimization of anion transport dynamics enhances the efficiency of the electrochromic redox reaction in the polyaniline‐based anionic AECF, contributing to a significant improvement of the overall electrochromic performance. Based on the switchable earth yellow and dark green discoloration, the AECF is further integrated into a camouflage uniform, achieving dynamic environment adaptation in deserts or forests. This work is anticipated to provide some fresh ideas for developing functional ion conductors of electrochromic fabrics toward applications in wearable intelligent electronics.
Clay‐based 2D nanofluidics present a promising avenue for osmotic energy harvesting due to their low cost and straightforward large‐scale preparation. However, a comprehensive understanding of ion transport mechanisms, and horizontal and vertical transmission, remains incomplete. By employing a multiscale approach in combination of first‐principles calculations and molecular dynamics simulations, the issue of how transmission directions impact on the clay‐based 2D nanofluidics on osmotic energy conversion is addressed. It is indicated that the selective and rapid hopping transport of cations in clay‐based 2D nanofluidics is facilitated by the electrostatic field within charged nanochannels. Furthermore, horizontally transported nanofluidics exhibited stronger ion fluxes, higher ion transport efficiencies, and lower transmembrane energy barriers compared to vertically transported ones. Therefore, adjusting the ion transport pathways between artificial seawater and river water resulted in an increase in osmotic power output from 2.8 to 5.3 W m−2, surpassing the commercial benchmark (5 W m−2). This work enhanced the understanding of ion transport pathways in clay‐based 2D nanofluidics, advancing the practical applications of osmotic energy harvesting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.