2008
DOI: 10.1007/s10617-008-9021-3
|View full text |Cite
|
Sign up to set email alerts
|

Elliptic curve cryptography on embedded multicore systems

Abstract: The increasing use of network-connected embedded devices and online transactions creates a growing demand of network security for embedded systems. The security requirements, such as authentication, confidentiality and integrity, always make computationally intensive processes and can easily become the bottleneck of the related applications. In this paper we implement an embedded multicore system, and explore the task scheduling methods in different levels. First, we propose an instruction scheduling method th… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
18
0
1

Year Published

2009
2009
2021
2021

Publication Types

Select...
6
1
1

Relationship

2
6

Authors

Journals

citations
Cited by 29 publications
(19 citation statements)
references
References 17 publications
0
18
0
1
Order By: Relevance
“…In [10, Section 5.2.1] Hankerson, Menezes and Vanstone outline a hierarchy of operations in ECC as protocols, point multiplication, elliptic-curve addition and doubling, finite-field arithmetic. Fan, Sakiyama & Verbauwhede expand this in [7] to describe a 5-layer pyramid of 1. Integrity, confidentially, authentication, 2.…”
Section: Implementation Hierarchymentioning
confidence: 99%
“…In [10, Section 5.2.1] Hankerson, Menezes and Vanstone outline a hierarchy of operations in ECC as protocols, point multiplication, elliptic-curve addition and doubling, finite-field arithmetic. Fan, Sakiyama & Verbauwhede expand this in [7] to describe a 5-layer pyramid of 1. Integrity, confidentially, authentication, 2.…”
Section: Implementation Hierarchymentioning
confidence: 99%
“…The use of multi-core processors is an emerging research topic in the context of cryptographic implementation, for example Fan et al investigate modular multiplication [16] and ECC [17] on this type of platform. Intra-pairing parallelism is clearly possible at the field arithmetic level as evidenced by related hardware based approaches [26].…”
Section: Multi-core Processorsmentioning
confidence: 99%
“…However, the number of Block RAMs necessary for the architecture is much larger than of Pöpper et al [32] or Varchola et al [38]. Fan et al [17] created an architecture for special primes and curves, namely the standardized NIST P-192. The approach was to parallelize Montgomery multiplication and formulas for point addition and doubling on the curve.…”
Section: Introductionmentioning
confidence: 99%