1965
DOI: 10.1016/0040-9383(65)90013-3
|View full text |Cite
|
Sign up to set email alerts
|

Elliptische differentialoperatoren und Ganzzahligkeitssätze für charakteristische Zahlen

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

2
30
0
5

Year Published

1967
1967
2015
2015

Publication Types

Select...
5
3

Relationship

1
7

Authors

Journals

citations
Cited by 44 publications
(37 citation statements)
references
References 13 publications
2
30
0
5
Order By: Relevance
“…Beweis. Fiir dim X = n gerade und W E K°(X) ist der Satz in [7] bewiesen. Ist n gerade und W E K 1 (X) oder n ungerade und W E K°(X), dann ist die Aussage trivial.…”
Section: Kh Mayerunclassified
See 1 more Smart Citation
“…Beweis. Fiir dim X = n gerade und W E K°(X) ist der Satz in [7] bewiesen. Ist n gerade und W E K 1 (X) oder n ungerade und W E K°(X), dann ist die Aussage trivial.…”
Section: Kh Mayerunclassified
“…Es seien p : X x E 2--, X und n : X x S X~X die natiirlichen Projektionen. Nach [7], § 3.1 ist ffir F E K°(X x S 1) (1) …”
Section: Satz X Habe Keinen Rand Es Sei V E I N Reelles Orientierteunclassified
“…We shall show that The methods of this paper were first used by Feder [5] to obtain nonimmersions of projective spaces CP", n odd. Mayer [9] obtains very general nonimmersion results for manifolds, but our methods give stronger results for the flag manifolds considered here. Here, the term H(BG) • H*(BH) is the ideal ofH*(BH) generatedby H(BG).…”
Section: Introductionmentioning
confidence: 99%
“…It is well known that stable span(M ) = r > 0 implies divisibility conditions for the signature and also for the twisted signatures. These divisibility conditions may be deduced from a general integrality theorem, which was proved in [10] by using elliptic differential operators. For the signature these conditions are stated and proved by other methods in [1] and [6].…”
Section: Introductionmentioning
confidence: 99%
“…Z v e n g r o w s k i . When M is orientable and has dimension divisible by 4, then the signature of M may be used to determine upper bounds for stable span(M ) ( [1], [6], [10]). Actually it is possible to use twisted signatures for this purpose.…”
Section: Introductionmentioning
confidence: 99%