This paper presents the state-of-the-art techniques employed in aerothermal modeling to respond to the current observatory design challenges, particularly those of the next generation of extremely large telescopes (ELTs), such as the European ELT, the Thirty Meter Telescope International Observatory (TIO), and the Giant Magellan Telescope (GMT). It reviews the various aerothermal simulation techniques, the synergy between modeling outputs and observatory integrating modeling, and recent applications. The suite of aerothermal modeling presented includes thermal network models, Computational Fluid Dynamics (CFD) models, solid thermal and deformation models, and conjugate heat transfer models (concurrent fluid/solid simulations). The aerothermal suite is part of the overall observatory integrated modeling (IM) framework, which also includes optics, dynamics, and controls. The outputs of the IM framework, nominally image quality (IQ) metrics for a specific telescope state, are fed into a stochastic framework in the form of a multidimensional array that covers the range of influencing operational parameters, thus providing a statistical representation of observatory performance. The applications of the framework range from site selection, ground layer characterization, and site development to observatory performance current best estimate and optimization, active thermal control design, structural analysis, and an assortment of cost–performance trade studies. Finally, this paper addresses planned improvements, the development of new ideas, attacking new challenges, and how it all ties to the “Computational Fluid Dynamics Vision 2030” initiative.