The development of economical, efficient, and robust electrocatalysts toward the hydrogen evolution reaction (HER) is highly imperative for the rapid advancement of renewable H 2 energy-associated technologies. Extensive utilization of the heterointerface effect can endow the catalysts with remarkably boosted electrocatalytic performance due to the modified electronic state of active sites. Herein, we demonstrate deliberate crafting of CoP/CoO heterojunction porous nanotubes (abbreviated as CoP/CoO PNTs hereafter) using a self-sacrificial template-engaged strategy. Precise control over the Kirkendall diffusion process of the presynthesized cobalt-aspartic acid complex nanowires is indispensable for the formation of CoP/CoO heterostructures. The topochemical transformation strategy of the reactive templates enables uniform and maximized construction of CoP/CoO heterojunctions throughout all the porous nanotubes. The establishment of CoP/ CoO heterojunctions could considerably modify the electronic configuration of the active sites and also improve the electric conductivity, which endows the resultant CoP/CoO PNTs with enhanced intrinsic activity. Simultaneously, the hollow and porous nanotube architectures allow sufficient accessibility of exterior/interior surfaces and molecular permeability, drastically promoting the reaction kinetics. Consequently, when used as HER electrocatalysts, the Carbon Energy.