Generating complete, high-quality genome assemblies is key for any downstream analysis, such as comparative genomics. For bacterial genome assembly, various algorithms and fully automated pipelines exist, which are free-of-charge and easily accessible. However, these assembly tools often cannot unambiguously resolve a bacterial genome, for example due to the presence of sequence repeat structures on the chromosome or on plasmids. Then, a more sophisticated approach and/or manual curation is needed. Such modifications can be challenging, especially for non-bioinformaticians, because they are generally not considered as a straightforward process. In this study, we propose a standardized approach for manual genome completion focusing on the popular hybrid assembly pipeline Unicycler. The provided Galaxy workflow addresses two weaknesses in Unicycler’s hybrid assemblies: (i) collapse of inter-plasmidic repeats and (ii) false loss of single-copy sequences. To demonstrate and validate how to detect and resolve these assembly errors, we use two genomes from the
Bacillus cereus
group. By applying the proposed pipeline following an automated assembly, the genome sequence quality can be significantly improved.