Rare earths are important materials in various technologies such as catalysis and optoelectronics. Graphene oxide (GO) is a promising material for separation applications, including the isolation of lanthanides from complex mixtures. Previous works using fatty acid monolayers have demonstrated preferential heavy versus light lanthanide adsorption, which has been attributed to differences in lanthanide ion size. In this work, we used interfacial X-ray fluorescence measurements to reveal that GO thin films at the air/water interface have no lanthanide selectivity for dilute subphases. However, at high subphase concentrations, ∼8 times more Lu is adsorbed than La. By comparing the GO results with an ideal monolayer with a carboxylic acid headgroup, arachidic acid (AA), we demonstrate that the number of Lu ions adsorbed to GO is significantly higher than the number expected to compensate for the surface charge. Vibrational sum frequency generation (SFG) spectroscopy results on both GO thin films and AA monolayers reveal a red-shifted SFG signal in the OH region, which we attribute to partial dehydration of the adsorbed ions and carboxylic acid headgroups. Liquid surface X-ray reflectivity data show that the GO thin film structure does not significantly change between the very dilute and concentrated subphases. We speculate that the functional groups of both GO and AA facilitate cation dehydration, which is essential for ion adsorption. Heavy lanthanide Lu has stronger ion−ion correlations that can overcome the electrostatic repulsion between cations at higher concentrations compared to light lanthanide La, meaning GO and AA can exhibit apparent overcharge with Lu. Lastly, the layered structure of the GO films and reactive chemical nature of GO itself can accommodate ion adsorption.