The deoxygenation of triglycerides (tristearin, triolein and soybean oil) under nitrogen atmosphere was investigated over 20 wt% Ni/C, 5 wt% Pd/C and 1 wt% Pt/C catalysts. Use of the Ni catalyst resulted in near quantitative conversion of the triglyceride in each case, high yields of linear C5 to C17 alkanes and alkenes being obtained. Oxygen was rejected as CO and CO 2 , while small amounts of light alkanes (C1-C4) and H 2 were also formed. 13 C NMR spectroscopic analysis of the liquid product from soybean oil deoxygenation at intermediate reaction times suggested that one pathway for triglyceride deoxygenation involves liberation of fatty acids via C-O bond scission and concomitant H transfer, followed by elimination of CO 2 from the acids in a later step. Compared to Ni, catalysts containing Pd or Pt supported on activated carbon showed lower activity for both triglyceride deoxygenation and for cracking of the fatty acid chains.