2022 IEEE 7th Southern Power Electronics Conference (SPEC) 2022
DOI: 10.1109/spec55080.2022.10058252
|View full text |Cite
|
Sign up to set email alerts
|

Embedded FPGA-based Motion Planning and Control of a Dual-arm Car-like Robot

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
5

Citation Types

0
4
0
2

Year Published

2023
2023
2024
2024

Publication Types

Select...
4
2

Relationship

0
6

Authors

Journals

citations
Cited by 6 publications
(6 citation statements)
references
References 23 publications
0
4
0
2
Order By: Relevance
“…With the ability to calculate and process data in parallel, FPGAs are widely used in the field of robot control. FPGA helps improve hardware processing power and real-time information processing speed [34][35][36][37][38][39][40].Chen et al [34] implemented the forward/inverse kinematics for a SCRARA robot on FPGA. The parameterized function is utilized to increase the code flexibility in the design, and then the Finite state machine is employed to reduce the hardware resource.…”
Section: Introductionmentioning
confidence: 99%
See 1 more Smart Citation
“…With the ability to calculate and process data in parallel, FPGAs are widely used in the field of robot control. FPGA helps improve hardware processing power and real-time information processing speed [34][35][36][37][38][39][40].Chen et al [34] implemented the forward/inverse kinematics for a SCRARA robot on FPGA. The parameterized function is utilized to increase the code flexibility in the design, and then the Finite state machine is employed to reduce the hardware resource.…”
Section: Introductionmentioning
confidence: 99%
“…The parameterized function is utilized to increase the code flexibility in the design, and then the Finite state machine is employed to reduce the hardware resource. FPGA-based motion control was developed by Chand et al [38] for a dual-arm robot. The motion planning and control problem was solved by implementing Lyapunov-based acceleration controllers on FPGA.…”
Section: Introductionmentioning
confidence: 99%
“…This research uses the Lyapunov-based control scheme (LbCS), is applied widely in robotics, especially in the analysis of motion planning and control problems [41] , [42] , [43] . It is a type of Artificial Potential Field method that uses the Lyapunov function or total potentials to design appropriate velocity or acceleration-based controllers that guide the robots to their designated goals.…”
Section: Introductionmentioning
confidence: 99%
“…Las FPGAs ofrecen ventajas significativas para aplicaciones en sistemas robóticos como: bajo consumo de energía, rendimiento, velocidad de procesamiento, paralelismo, aceleración de hardware, reconfigurabilidad, versatilidad y baja latencia (Al-Khalidy et al, 2020;Chand et al, 2022;Liu et al, 2021;Miyagi et al, 2021;Nilay et al, 2020;Wan et al, 2021Wan et al, , 2022. Sin embargo, el uso de FPGAs aún no está muy extendido debido a una complejidad mayor con respecto a la programación en software y la integración de componentes de hardware y software por medio del codiseño (Podlubne & Göhringer, 2022;Wan et al, 2021Wan et al, , 2022.…”
Section: Introductionunclassified
“…Sin embargo, el uso de FPGAs aún no está muy extendido debido a una complejidad mayor con respecto a la programación en software y la integración de componentes de hardware y software por medio del codiseño (Podlubne & Göhringer, 2022;Wan et al, 2021Wan et al, , 2022. Dentro de la literatura existen esfuerzos en el uso de FPGAs en robótica, algunos ejemplos de los trabajos más actuales son los siguientes: (i) recolector de fruta robótico con base móvil y brazo de tres grados de libertad con aceleración de redes neuronales en FPGA (Nilay et al, 2020), (ii) robot omnidireccional de tres ruedas con control inteligente adaptativo en FPGA (Al-Khalidy et al, 2020), (iii) robot de rescate con control en FPGA (Sudhakar et al, 2023), (iv) robot con base móvil y dos brazos robóticos con planificación y control de movimiento en FPGA (Chand et al, 2022), (v) robot autónomo con procesamiento de imágenes en FPGA (Kojima, 2022), (vi) robot móvil con aparcamiento autónomo en FPGA (Divya Vani et al, 2022), (vii) robot de rescate con detección en FPGA (Sun et al, 2014), (viii) robot móvil con controlador cinemático en FPGA (Tsai et al, 2010), y (ix) robot móvil con procesamiento de imágenes en FPGA (Miyagi et al, 2021).…”
Section: Introductionunclassified