Bioinspired structural color represents a burgeoning field that draws upon principles, strategies, and concepts derived from biological systems to inspire the design of novel technologies or products featuring reversible color changing mechanisms, with significant potential applications for camouflage, sensors, anticounterfeiting, etc. This mini-review focuses specifically on the research progress of bioinspired structural color in the realm of camouflage. Firstly, it discusses fundamental mechanisms of coloration in biological systems, encompassing pigmentation, structural coloration, fluorescence, and bioluminescence. Subsequently, it delineates three modulation strategies—namely, photonic crystals, film interference, and plasmonic modulation—that contribute to the development of bioinspired structural color materials or devices. Moreover, the review critically assesses the integration of bioinspired structural color materials with environmental contexts, with a particular emphasis on their application in camouflage. Finally, the paper outlines persisting challenges and suggests future development trends in the camouflage field via bioinspired structural color.