As easy-to-deploy, off-the-shelf sensors decrease in cost and increase in accessibility through their integration with well-documented, entry-level electronics platforms, low-quality sensors are increasingly being inappropriately used to characterize physical and natural processes under varying environmental and operational conditions. This is notably occurring across water and hydraulic system applications, which necessitates measuring water levels using ultrasonic sensors. To lay a roadmap for future water and hydraulic system monitoring research and implementation, there is a need to develop a well-informed mapping between sensors and application areas for which the use of the sensors is deemed appropriate. In this work, we identify commonly used ultrasonic sensors, develop systematic experimental setups to simulate their use in common application areas, and evaluate their accuracy under varying conditions and parameters. From the results of these experiments, we present a suggested mapping between sensors and application areas/conditions for which the use of the sensors is appropriate, in addition to limitations placed on each sensor-application pairing are identified.