2019
DOI: 10.1371/journal.pone.0220809
|View full text |Cite
|
Sign up to set email alerts
|

Embedding MRI information into MRSI data source extraction improves brain tumour delineation in animal models

Abstract: Glioblastoma is the most frequent malignant intra-cranial tumour. Magnetic resonance imaging is the modality of choice in diagnosis, aggressiveness assessment, and follow-up. However, there are examples where it lacks diagnostic accuracy. Magnetic resonance spectroscopy enables the identification of molecules present in the tissue, providing a precise metabolomic signature. Previous research shows that combining imaging and spectroscopy information results in more accurate outcomes and superior diagnostic valu… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
3
0
1

Year Published

2022
2022
2023
2023

Publication Types

Select...
3
1

Relationship

2
2

Authors

Journals

citations
Cited by 4 publications
(4 citation statements)
references
References 41 publications
0
3
0
1
Order By: Relevance
“…Para el desarrollo de nuestra investigación se optará por esta última opción, para lo cual se cuenta con las bases de datos generada a partir de los estudios previos realizados por (Ortega-Martorell et al, 2019) en los años 2012, 2013 y 2016, reseñados en la bibliografía de esta propuesta.…”
Section: Alcance Y Limitacionesunclassified
“…Para el desarrollo de nuestra investigación se optará por esta última opción, para lo cual se cuenta con las bases de datos generada a partir de los estudios previos realizados por (Ortega-Martorell et al, 2019) en los años 2012, 2013 y 2016, reseñados en la bibliografía de esta propuesta.…”
Section: Alcance Y Limitacionesunclassified
“…One reason is that the PROV data model has strong scenario applicability. The other reason is that the PROV data model has relatively complete open-source codes [ 23 , 24 ].…”
Section: Bt and Rm Technologymentioning
confidence: 99%
“…Our groups have been working in the preclinical scenario in order to explore, interpret, analyse and validate the potential of the spectroscopic approaches, especially spectroscopic imaging (MRSI), in the early assessment of therapy responses [7][8][9]. Also, for several years now, machine learning (ML) and deep learning (DL) methods have been consistently shown to be able to help with tasks such as brain tumour detection [10][11][12], diagnosis and grading [13][14][15], classification [16][17][18][19], segmentation of the affected/tumour area [20][21][22] and therapy response prediction to distinguish post-treatment effects and tumour progression [23][24][25][26][27], among others. Hence, we firmly believe that ML and DL methods applied to such metabolomic datasets using whole pattern inputs may help to unravel its potential in a way that would not be possible with a single metabolite or ratio quantitation.…”
Section: Introductionmentioning
confidence: 99%