Abstract:A finite group G is called admissible over a given field if there exists a central division algebra that contains a G-Galois field extension as a maximal subfield. We give a definition of embedding problems of division algebras that extends both the notion of embedding problems of fields as in classical Galois theory, and the question which finite groups are admissible over a field. In a recent work by Harbater, Hartmann and Krashen, all admissible groups over function fields of curves over complete discretely… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.