2014
DOI: 10.1080/00927872.2013.865055
|View full text |Cite
|
Sign up to set email alerts
|

Embedding Problems of Division Algebras

Abstract: A finite group G is called admissible over a given field if there exists a central division algebra that contains a G-Galois field extension as a maximal subfield. We give a definition of embedding problems of division algebras that extends both the notion of embedding problems of fields as in classical Galois theory, and the question which finite groups are admissible over a field. In a recent work by Harbater, Hartmann and Krashen, all admissible groups over function fields of curves over complete discretely… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 26 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?