Abstract:We introduce an embedding of the free magma on a set A into the direct product of the free magma on a singleton set and the free semigroup on A. This embedding is then used to prove several theorems related to algebraic independence of subsets of the free non-associative algebra on A. Among these theorems is a generalization of a result due to Kurosh, which states that every subalgebra of a free non-associative algebra is also free.
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.