Embodied cognition is known to play a role in verbal semantic processing. However, its involvement in nonverbal semantic elements, such as arrows, is less understood. Two spatial recognition tasks, specifically arrow-orientation recognition and arrow-position recognition, were employed using directional arrows in various spatial arrangements as visual stimuli. Stimuli were categorized into congruent (where orientation and position align), incongruent 1 (where orientation and position are directly opposing), and incongruent 2 (where orientation and position are unrelated) groups for both tasks. To investigate neural processes, event-related potentials (ERPs) were recorded and analyzed during task performance. Additionally, standardized low-resolution electromagnetic tomography (sLORETA) was utilized to examine brain electrical activity during ERP intervals. The analysis revealed significant ERP component differences between congruent and incongruent conditions across both spatial tasks, highlighting a Stroop-like interference effect. Notably, the arrow-orientation task showed marked enhancements in P3 and N400 components, as well as heightened brain activity in the frontal lobe, anterior cingulate cortex, and insula, compared with the arrow-position task. These findings suggest that embodied cognition is involved in both spatial arrow recognition tasks. The unique role of embodied cognition in these contexts is primarily reflected in the modulation of the P3-N400 complex, indicating differentiated cognitive processing.