Background
Adverse obstetric outcomes are correlated with altered circulating hormone levels at the time implantation by the trophectoderm. What’ more, embryo freezing process may also have adverse effect on perinatal outcomes. This study aims to evaluate whether increasing interval time between a freeze-all cycle and a subsequent frozen-thawed single blastocyst transfer could have any effect on pregnancy and perinatal outcomes.
Methods
This was a retrospective cohort study included the first single blastocyst transfer in artificially cycles of all patients who underwent a freeze-all cycle between January 1st, 2016 and September 30th, 2018. All patients were divided into two groups according to the time interval between oocyte retrieval and the day of first frozen-thawed embryo transferred (FET): Group 1 (immediate FET cycles) and Group 2 (delayed FET cycles).
Results
No significant differences were reported between the two groups regarding the rates of clinical pregnancy, live birth, biochemical pregnancy and pregnancy loss even after adjusting for measured confounding. When accounting for perinatal outcomes, gestational age, birth weight, delivery mode, fetus gender, preterm birth, gestational hypertension, GDM, placenta previa, fetal malformation and low birthweight also did not vary significantly between the two groups. Only the incidence of macrosomia was more frequently in the Group 2 compared with the Group 1 (AOR 3.886, 95%CI 1.153–13.103, P = 0.029) after adjusting with a multiple logistic regression model.
Conclusions
We found delayed FET cycles for blastocyst transfer following freeze-all cycles may not improve the pregnancy outcomes. On the contrary, postponement of FET cycles may increase the risk of macrosomia. Therefore, FET cycles for blastocyst transfer should be done immediately to avoid adverse effects of delayed time on perinatal outcomes.