We predict the properties of the propagating and nonpropagating vibrational modes in amorphous silica (a-SiO 2 ) and amorphous silicon (a-Si) and, from them, thermal conductivity accumulation functions. The calculations are performed using molecular dynamics simulations, lattice dynamics calculations, and theoretical models. For a-SiO 2 , the propagating modes contribute negligibly to thermal conductivity (6%), in agreement with the thermal conductivity accumulation measured by Regner et al. [Nat. Commun. 4, 1640]. For a-Si, propagating modes with mean-free paths up to 1 μm contribute 40% of the total thermal conductivity. The predicted contribution to thermal conductivity from nonpropagating modes and the total thermal conductivity for a-Si are in agreement with the measurements of Regner et al. The accumulation in the measurements, however, takes place over a narrower band of mean-free paths (100 nm-1 μm) than that predicted (10 nm-1 μm).