Sequence type (ST) 5 methicillin-resistant
Staphylococcus aureus
(MRSA) with staphylococcal cassette chromosome
mec
(SCCmec)
type II (ST5-MRSA-II) and ST72-MRSA-IV represent the most significant genotypes
for healthcare- (HA) and community-associated (CA) MRSA in Korea, respectively.
In addition to the human-type MRSA strains, the prevalence of
livestock-associated (LA) MRSA clonal lineages, such as ST541 and ST398
LA-MRSA-V in pigs and ST692 LA-MRSA-V and ST188 LA-MRSA-IV in chickens, has
recently been found. In this study, clonotype-specific resistance profiles to
cathelicidins derived from humans (LL-37), pigs (PMAP-36), and chickens (CATH-2)
were examined using six different ST groups of MRSA strains: ST5 HA-MRSA-II,
ST72 CA-MRSA-IV, ST398 LA-MRSA-V, ST541 LA-MRSA-V, ST188 LA-MRSA-IV, and ST692
LA-MRSA-V. Phenotypic characteristics often involved in cathelicidin resistance,
such as net surface positive charge, carotenoid production, and hydrogen
peroxide susceptibility were also determined in the MRSA strains. Human- and
animal-type MRSA strains exhibited clonotype-specific resistance profiles to
LL-37, PMAP-36, or CATH-2, indicating the potential role of cathelicidin
resistance in the adaptation and colonization of human and animal hosts. The ST5
HA-MRSA isolates showed enhanced resistance to all three cathelicidins and
hydrogen peroxide than ST72 CA-MRSA isolates by implementing increased surface
positive charge and carotenoid production. In contrast, LA-MRSA strains employed
mechanisms independent of surface charge regulation and carotenoid production
for cathelicidin resistance. These results suggest that human- and
livestock-derived MRSA strains use different strategies to counteract the
bactericidal action of cathelicidins during the colonization of their respective
host species.