We study the non-equilibrium dynamics of conformal field theory (CFT) in 1+1 dimensions with a smooth position-dependent velocity v(x) explicitly breaking translation invariance. Such inhomogeneous CFT is argued to effectively describe 1+1-dimensional quantum many-body systems with certain inhomogeneities varying on mesoscopic scales. Both heat and charge transport are studied, where, for concreteness, we suppose that our CFT has a conserved U(1) current. Based on projective unitary representations of diffeomorphisms and smooth maps in Minkowskian CFT, we obtain a recipe for computing the exact non-equilibrium dynamics in inhomogeneous CFT when evolving from initial states defined by smooth inverse-temperature and chemical-potential profiles $$\beta (x)$$
β
(
x
)
and $$\mu (x)$$
μ
(
x
)
. Using this recipe, the following exact analytical results are obtained: (i) the full time evolution of densities and currents for heat and charge transport, (ii) correlation functions for components of the energy–momentum tensor and the U(1) current as well as for any primary field, and (iii) the thermal and electrical conductivities. The latter are computed by direct dynamical considerations and alternatively using a Green–Kubo formula. Both give the same explicit expressions for the conductivities, which reveal how inhomogeneous dynamics opens up the possibility for diffusion as well as implies a generalization of the Wiedemann–Franz law to finite times within CFT.