Emergence of local geometric laws of step flow in homoepitaxial growth
Ian Johnson,
Dionisios Margetis
Abstract:Below the roughening transition, crystal surfaces exhibit nanoscale line defects, steps, that move by exchanging atoms with their environment. In homoepitaxy, we analytically show how the motion of a step train in vacuum under strong desorption can be approximately described by nonlinear laws that depend on local geometric features such as the curvature of each step, as well as suitably defined effective terrace widths. We assume that each step edge, a free boundary, can be represented by a smooth curve in a f… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.