INTRODUCTION: Chest imaging is necessary for diagnosis of COVID-19 pneumonia, but current risk stratification tools do not consider radiographic severity. We quantified radiographic heterogeneity among inpatients with COVID-19 with the Radiographic Assessment of Lung Edema (RALE) score on Chest X-rays (CXRs).
METHODS: We performed independent RALE scoring by ≥2 reviewers on baseline CXRs from 425 inpatients with COVID-19 (discovery dataset), we recorded clinical variables and outcomes, and measured plasma host-response biomarkers and SARS-CoV-2 RNA load from subjects with available biospecimens.
RESULTS: We found excellent inter-rater agreement for RALE scores (intraclass correlation co-efficient=0.93). The required level of respiratory support at the time of baseline CXRs (supplemental oxygen or non-invasive ventilation [n=178]; invasive-mechanical ventilation [n=234], extracorporeal membrane oxygenation [n=13]) was significantly associated with RALE scores (median [interquartile range]: 20.0[14.1-26.7], 26.0[20.5-34.0] and 44.5[34.5-48.0], respectively, p<0.0001). Among invasively-ventilated patients, RALE scores were significantly associated with worse respiratory mechanics (plateau and driving pressure) and gas exchange metrics (PaO2/FiO2 and ventilatory ratio), as well as higher plasma levels of IL-6, sRAGE and TNFR1 levels (p<0.05). RALE scores were independently associated with 90-day survival in a multivariate Cox proportional hazards model (adjusted hazard ratio 1.04[1.02-1.07], p=0.002). We validated significant associations of RALE scores with baseline severity and mortality in an independent dataset of 415 COVID-19 inpatients.
CONCLUSION: Reproducible assessment of radiographic severity revealed significant associations with clinical and physiologic severity, host-response biomarkers and clinical outcome in COVID-19 pneumonia. Incorporation of radiographic severity assessments may provide prognostic and treatment allocation guidance in patients hospitalized with COVID-19.