The notable transformation of the electronic properties of transition-metal dichalcogenides (TMDs) when reduced to a single X-M-X plane (X: chalcogen; M: metal) [1] makes them suitable for flexible, innovative optoelectronic devices, [2][3][4] and transistors. [5] Like graphene, few-layer TMDs can also withstand surprisingly large mechanical deformations, [6][7][8][9] which, coupled to the material's electronic structure, would enable the observation of nondissipative topological transport, provided a periodic modulation of strain is attained. [10][11][12][13] TMD monolayers (MLs) and nanostructures are also important for their catalytic role in the cost-effective production of hydrogen. [14][15][16] These examples share the need to achieve spatial control of the material's properties, over sample regions with size ranging from the nano [14,16] to the micrometer [16] scale lengths.In this study, we present a route toward the patterning of TMDs based on the effects of low-energy proton irradiation [17] on the structural and electronic properties of bulk WS 2 , WSe 2 , WTe 2 , MoS 2 , MoSe 2 , and MoTe 2 . Suitable irradiation conditions trigger the production and accumulation of H 2 just beneath the first X-M-X basal plane, leading to the localized exfoliation of the topmost monolayer and to the formation of spherically shaped domes. Structural and optical characterizations confirm that these domes are typically one ML-thick and contain H 2 at pressures in the 10-100 atm range, depending on their size. Such high pressures induce strong and complex strain fields acting on the curved X-M-X planes, that are evaluated by means of a mechanical model. The domes' morphological characteristics can be tuned by lithographically controlling the area of the sample basal plane participating in the hydrogen production process. This results in the unprecedented fabrication of robust domes with controlled position/density and sizes tunable from the nanometer to the micrometer scale, that, by virtue of their inherently strained nature and geometry, might prompt a variety of applications.The samples, consisting of thick (tens to hundreds of MLs) TMD flakes, were obtained by mechanical exfoliation, deposited on Si substrates, and afterwards proton-irradiated using a Kaufman source (see the Experimental Methods). Differently from the other works in the literature concerning protonirradiation of TMDs-where beams with energies ≥10 5 eV are used, [18] aiming at the controlled formation of defects in the irradiated samples-here we irradiate the flakes with low energy At the few-atom-thick limit, transition-metal dichalcogenides (TMDs) exhibit strongly interconnected structural and optoelectronic properties. The possibility to tailor the latter by controlling the former is expected to have a great impact on applied and fundamental research. As shown here, proton irradiation deeply affects the surface morphology of bulk TMD crystals. Protons penetrate the top layer, resulting in the production and progressive accumulation of molecular hydr...