BackgroundResuscitative balloon occlusion of the aorta (REBOA) can maintain hemodynamic stability during hemorrhagic shock after a following torso injury, although inappropriate balloon placement may induce brain or visceral organ ischemia. External anatomical landmarks [the suprasternal notch (SSN) and xiphoid process (Xi)] are empirically used to implement REBOA in zone 1. We aimed to confirm if these landmarks were useful for determining a balloon catheter length for safe implementation of REBOA in zone 1 without using fluoroscopy.MethodWe selected 25 successive adult blunt trauma cases requiring contrast-enhanced chest/abdominal computed tomography (CT) treated at our emergency department (in an urban area of Kyoto city, Japan) between October 1, 2016 and January 31, 2017. We retrospectively evaluated anonymized CT images. We used three-dimensional multiplanar reconstructions to measure the length along the aorta’s central axis, from the bilateral common femoral arteries (FA) to the celiac trunk (CeT) (FA–CeT) and to the origin of the left subclavian artery (LSCA) (FA–LSCA). Volume-rendering reconstruction images were used to measure the external distance from common FAs to SSN (FA–SSN) and to Xi (FA–Xi).ResultFA–LSCA was significantly longer than FA–SSN. FA–CeT was significantly shorter than FA–Xi.DiscussionBased on these results, the REBOA balloon catheter should be shorter than FA–SSN, and longer than FA–Xi to avoid placement outside zone 1. The advantages of this method are that it can rapidly and easily predict a safe balloon catheter length, and it reflects each patient’s individual torso height.ConclusionTo safely implement REBOA, the balloon catheter length should be shorter than FA–SSN and longer than FA–Xi. We believe that these anatomical landmarks are good references for safe implementation of REBOA in zone 1 without radiographic guidance.