Glioblastoma multiforme (GBM) is a primary malignant brain tumor characterized by a high grade of malignancy and an extremely unfavorable prognosis. The current efficacy of established treatments for GBM is insufficient, necessitating the prompt development of novel therapeutic approaches. The progress made in the fundamental scientific understanding of GBM is swiftly translated into more advanced stages of therapeutic studies. Despite extensive efforts to identify new therapeutic approaches, GBM exhibits a high mortality rate. The current efficacy of treatments for GBM patients is insufficient due to factors such as tumor heterogeneity, the blood–brain barrier, glioma stem cells, drug efflux pumps, and DNA damage repair mechanisms. Considering this, pharmacological cocktail therapy has demonstrated a growing efficacy in addressing these challenges. Towards this, various forms of immunotherapy, including the immune checkpoint blockade, chimeric antigen receptor T (CAR T) cell therapy, oncolytic virotherapy, and vaccine therapy have emerged as potential strategies for enhancing the prognosis of GBM. Current investigations are focused on exploring combination therapies to mitigate undesirable side effects and enhance immune responses against tumors. Furthermore, clinical trials are underway to evaluate the efficacy of several strategies to circumvent the blood–brain barrier (BBB) to achieve targeted delivery in patients suffering from recurrent GBM. In this review, we have described the biological and molecular targets for GBM therapy, pharmacologic therapy status, prominent resistance mechanisms, and new treatment approaches. We also discuss these promising therapeutic approaches to assess prospective innovative therapeutic agents and evaluated the present state of preclinical and clinical studies in GBM treatment. Overall, this review attempts to provide comprehensive information on the current status of GBM therapy.