Stability of polyplex and safety are key factors to achieve stable gene transfection and high transfection efficiency. In this report, a star‐like amphiphilic biocompatible cyclodextrin‐poly(ε‐caprolactone)‐poly(2‐(dimethylamino) ethyl methacrylate), β‐CD‐g‐(PCL‐b‐PDMAEMA)
x
copolymer, consisting of biocompatible cyclodextrin core, biodegradable and stable poly(ε‐caprolactone) PCL segments, cationic and hydrophilic PDMAEMA blocks, is synthesized to achieve high efficiency of gene transfection with enhanced stability, due to the micelle formation by hydrophobic PCL segments. In comparison with polyethylenimine (PEI‐25k), a golden standard for nonviral vector gene delivery, this copolymer shows higher encapsulated plasmid desoxyribose nucleic acid (pDNA) ability and the persistence of transgene expression. More interestingly, this gene delivery platform by β‐CD‐g‐(PCL‐b‐PDMAEMA)
x
shows lower toxicity but better gene transfection efficiency at low N/P ratios, indicating high potential in gene therapy applications.