During the past three decades, the study of nuclear and chromatin organization has become of great interest. The organization and dynamics of chromatin are directly responsible for many functions including gene regulation, genome replication, and maintenance. In order to better understand the details of these mechanisms, we need to understand the role of specific proteins that take part in these processes. The genome in the nucleus is organized in different length scales, ranging from the bead‐like nucleosomes through topological associated domains up to chromosome territories. The mechanisms that maintain these structures, however, remain to be fully elucidated. Previous works highlighted the significance of lamin A, an important nucleoplasmic protein; however, there are other nuclear structural proteins that are also important for chromatin organization. Studying the organizational aspects of the nucleus is a complex task, and different methods have been developed and adopted for this purpose, including molecular and imaging methods. Here we describe the use of the live‐cell imaging method and demonstrate that the dynamics of the nucleus is strongly related to its organizational mechanisms. We labeled different genomic sites in the nucleus and measured the effect of nuclear structural proteins on their dynamics. We studied lamin A, BAF, Emerin, lamin B, CTCF, and Cohesin and discuss how each of them affect chromatin dynamics. Our findings indicate that lamin A and BAF have a significant effect on chromosomes dynamics, while other proteins mildly affect the type of the diffusion while the volume of motion is not affected.