2020 7th International Conference on Information Technology, Computer, and Electrical Engineering (ICITACEE) 2020
DOI: 10.1109/icitacee50144.2020.9239169
|View full text |Cite
|
Sign up to set email alerts
|

EMG Signal Processing of Myo Armband Sensor for Prosthetic Hand Input using RMS and ANFIS

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
4
0
2

Year Published

2021
2021
2024
2024

Publication Types

Select...
4
2

Relationship

0
6

Authors

Journals

citations
Cited by 7 publications
(6 citation statements)
references
References 9 publications
0
4
0
2
Order By: Relevance
“…The motion data consists of 8 channels of EMG data along with IMU data that contains unit quaternions, Euler angles for pitch, yaw, roll and 3-axis accelerometer, 3-axis gyroscope adding up to a total of 21 input signals for each recording. For each of the input signals, five time-domain features were captured [16][17][18][19][20]. These include: Mean Absolute Value (MAV), Root Mean Square (RMS), Waveform Length (WL), Zero Crossing (ZC) and Slope Sign Change (SSC) [16].…”
Section: ) Motion Feature Extractionmentioning
confidence: 99%
“…The motion data consists of 8 channels of EMG data along with IMU data that contains unit quaternions, Euler angles for pitch, yaw, roll and 3-axis accelerometer, 3-axis gyroscope adding up to a total of 21 input signals for each recording. For each of the input signals, five time-domain features were captured [16][17][18][19][20]. These include: Mean Absolute Value (MAV), Root Mean Square (RMS), Waveform Length (WL), Zero Crossing (ZC) and Slope Sign Change (SSC) [16].…”
Section: ) Motion Feature Extractionmentioning
confidence: 99%
“…EMG sinyallerinden çıkartılan 16 öznitelik temel bileşen analizi (principal component analysis/PCA) kullanarak üçe indirgemiş ve sınıflandırma ortalama doğruluğunu %72 olarak elde etmiştir. Çalışma [6] ise proteze girdi sağlamak için sensörlerden elde edilen EMG sinyalinin işlenmesi ve örüntü tanımada kullanılması ile ilgili bir sistem önermişlerdir. Sinyallerden çıkartılan bir özniteliğe ait değerler ANFIS'te sınıflandırılmasıyla %98,09 doğruluk elde edilmiştir.…”
Section: Literatür öZeti (Literature Review)unclassified
“…Hareketi destekleme konusunda insan hayatını kolaylaştırmak için birçok sistem geliştirilmiştir ve bu alanda çoğunlukla EMG tabanlı miyoelektrik cihazlar kullanılmaktadır. Örneğin, sanal gerçeklik sistemleri, el protezleri ve dış iskeletler EMG kontrollü sistemlere birer örnektir [6][7][8]. Bahsedilen bu ve benzeri sistemlerde kontrol yaklaşımlarında kullanılan EMG sinyalleri, hareketin belirlenmesinde büyük fayda sağlasa da doğrusal ve durağan olmayan yapıları nedeniyle sinyallerin analizi çeşitli zorlukları beraberinde getirir [8,9].…”
Section: Giriş (Introduction)unclassified
“…This is due to the fact that the sEMG signal is weak and can present a lot of artifacts (Konrad, 2005;Reaz et al, 2006), the analysis of sEMG requires appropriate preprocessing, which includes proper filtering and artifact removal methods (Qiu et al, 2015;Yeon, Herr, 2021;Boyer et al, 2023). The sEMG signal is usually smoothed by a method based on the root mean square (RMS) calculation (Burden et al, 2014;Arabadzhiev et al, 2010;Gupta et al, 2017;Rose, 2014;Karabulut et al, 2017;Arozi et al, 2020;Josephson, Knight, 2019). RMS reflects the mean power of the signal .…”
Section: Surface Emg Processing Pipelinementioning
confidence: 99%