An environmentally responsible and sustainable replacement for finite fossil fuels is biodiesel. Because of its amazing qualities, biodiesel is becoming more and more popular as a renewable fuel around the globe. The many approaches, feedstocks, catalysts, comparison standards, reaction kinetics, final product analysis, and final product characterization of biodiesel are covered in this review article. Researchers have used a variety of techniques to produce biodiesel throughout history, with transesterification emerging as the most effective approach in more recent times. Numerous studies on biodiesel feedstock and catalysts to produce high biodiesel yields have been published; nevertheless, it should be highlighted that the type of feedstock must be considered while choosing a catalyst. The review paper highlights the significance of several parameters that are crucial to the manufacture of biodiesel, without which achieving a high yield would be challenging. The literature has also discussed the limitations and advantages of different catalysts, and scientists are currently working to identify the ideal catalyst within certain optimal parameters for the manufacture of biodiesel. Homogeneous reaction‐based biodiesel synthesis has a number of drawbacks, though, such as water content, a laborious purification procedure, and a low tolerance for free fatty acids. To address these issues, scientists have started investigating heterogeneous reactions involving solid catalysts. A large pore network, a moderate‐to‐high density of strong acid sites, a hydrophobic surface, and the ability to control surface hydrophobicity to avoid deactivation are all desirable characteristics of an ideal solid catalyst. Ion exchange resins, sulfated oxides, heterogeneous base catalysts, boron group‐based heterogeneous catalysts, alkaline earth metal oxides, mixed metal oxides, alkali metal oxides, heterogeneous catalysts derived from waste materials, and different approaches to biodiesel synthesis that employ enzymes, carbon‐based heterogeneous catalysts, and ionic liquids as catalysts are among the categories of catalysts that can be used in the production of biodiesel. The finest benchmarks to compare the quality of biodiesel with European and American Society for Testing Material standards. For detailed characterization of the finished product, gas chromatography and nuclear magnetic resonance are the most effective methods.