Levels of urban pollution can be influenced largely by meteorological conditions and the topography of the area. The impact of the relative humidity (RH) on the daily average PM 2.5 concentrations was studied at several sites in a mid-size South American city at a high elevation over the period of nine years. In this work, we show that there is a positive correlation between daily average urban PM 2.5 concentrations and the RH in traffic-busy central areas, and a negative correlation in the outskirts of the city in more industrial areas. While in the traffic sites strong events of precipitation (≥9 mm) played a major role in PM 2.5 pollution removal, in the city outskirts, the PM 2.5 concentrations decreased with increasing RH independently of rain accumulation. Increasing PM 2.5 concentrations are to be expected in any highly motorized city where there is high RH and a lack of strong precipitation, especially in rapidly growing and developing countries with high motorization due to poor fuel quality. Finally, two models, based on a logistic regression algorithm, are proposed to describe the effect of rain and RH on PM 2.5 , when the source of pollution is traffic-based vs. industry-based.