Background:
Hazardous air pollutants, or air toxics, are pollutants known to cause cancer or other serious health effects. Nationwide cancer risk from these pollutants is estimated by the U.S. EPA National Air Toxics Assessment. However, these model estimates are limited to the totality of the emissions inventory used as inputs, and further, they cannot be used to examine spatial and temporal trends in cancer risk from hazardous air pollutants.
Objectives:
To complement model estimates of nationwide cancer risk, we examined trends in cancer risk using monitoring data from 2013 to 2017 across the 27 U.S. National Air Toxics Trends Stations.
Methods:
For each monitoring site, we estimated cancer risk by multiplying the annual concentration for each monitored pollutant by its corresponding unit risk estimate. We examined the 5-y average (2013–2017) cancer risk across sites and the population levels and demographics within 1-mi of the monitors, as well as changes in estimated cancer risk over time. Finally, we examined changes in individual pollutant concentrations and their patterns of covariance.
Results:
We found that the total estimated cancer risk is higher for urban vs. rural sites, with the risk at seven urban sites (of 21) above 75 in 1 million. Furthermore, while most pollutant concentrations have not changed over the time period explored, we found 38 site-pollutant combinations that significantly declined and 12 that significantly increased between 2013 and 2017. We also identified a positive correlation between estimated cancer risk and percent of the population within 1-mi of a monitor that is low income.
Discussion:
Long-term trends show that annual mean concentrations of most measured air toxics have declined. Our evaluation of a more recent snapshot in time finds that most pollutant concentrations have not changed from 2013 to 2017. This analysis of cancer risk based on monitored values provides an important complement to modeled nationwide cancer risk estimates and can further inform future approaches to mitigate risk from exposure to hazardous air pollutants.
https://doi.org/10.1289/EHP8044