2012
DOI: 10.4137/bii.s8972
|View full text |Cite
|
Sign up to set email alerts
|

Emotion Detection in Suicide Notes using Maximum Entropy Classification

Abstract: An ensemble of supervised maximum entropy classifiers can accurately detect and identify sentiments expressed in suicide notes. Using lexical and syntactic features extracted from a training set of externally annotated suicide notes, we trained separate classifiers for each of fifteen pre-specified emotions. This formed part of the 2011 i2b2 NLP Shared Task, Track 2. The precision and recall of these classifiers related strongly with the number of occurrences of each emotion in the training data. Evaluating on… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
14
0
3

Year Published

2015
2015
2021
2021

Publication Types

Select...
6
2

Relationship

0
8

Authors

Journals

citations
Cited by 18 publications
(17 citation statements)
references
References 6 publications
0
14
0
3
Order By: Relevance
“…NLP can further distinguish between genuine and simulated suicide notes at a higher rate than mental healthcare practitioners (Pestian et al, 2008(Pestian et al, , 2010. Algorithms have also been designed to automate emotion detection in suicide notes via affective computing (Cherry et al, 2012;Wicentowski and Sydes, 2012) and assist with classifying content into specific themes (Spasic et al, 2012).…”
Section: Role Of Ai In Suicide Risk Predictionmentioning
confidence: 99%
“…NLP can further distinguish between genuine and simulated suicide notes at a higher rate than mental healthcare practitioners (Pestian et al, 2008(Pestian et al, , 2010. Algorithms have also been designed to automate emotion detection in suicide notes via affective computing (Cherry et al, 2012;Wicentowski and Sydes, 2012) and assist with classifying content into specific themes (Spasic et al, 2012).…”
Section: Role Of Ai In Suicide Risk Predictionmentioning
confidence: 99%
“…NLP challenge proposed by Informatics for Integrating Biology and Bedside (i2b2) in 2011 dealt with SA of suicide notes [16]. Many researchers participated in this challenge and the results were published in several papers [3,5,15,[17][18][19][20][21][22][23]. This challenge provided researchers with 900 notes made by those who already committed suicide and died as a result.…”
Section: -Resultsmentioning
confidence: 99%
“…Those with a failed attempt of suicide are at a high risk of making a new suicide attempt (12-30%) or completing suicide (1-3%) within the next one year [2]. An analysis of suicide notes can partly help to delve into their mind [3,5,9,14,15,[18][19][20][21][22][23]. Even in an absence of any notes, questionnaires can be used to explore their emotions [4,24].…”
Section: -Discussionmentioning
confidence: 99%
“…Esto abre una ventana de desafíos y retos para llevar a cabo procesamiento automático de textos en español. Además, algunos trabajos revisados (Reyes-Ortiz & Bravo, 2018;Sawhney et al, 2018;Wicentowski & Sydes, 2012;Luyckx et al, 2012;Liakata et al, 2012;Poulin et al, 2014;Carson et al, 2019), se enfocan, solamente, en la identificación o clasificación del suicidio, mientras que nuestro trabajo añade la extracción y análisis de las causas del mismo. Por lo tanto, además de aportar una solución al problema de la extracción automática de causas del suicidio, brinda un panorama sobre los marcadores lingüísticos causales que son característicos de este tipo de textos en español y almacena las causas del suicidio reportadas en notas periodísticas.…”
Section: Trabajo Relacionadounclassified
“…Existen trabajos que han analizado las notas clínicas para predecir los riesgos de suicidios en los pacientes, como en el trabajode Poulin et al (2014) que utiliza un algoritmo de aprendizaje automático basado en programación genética para llevar a cabo esta tarea a partir de notas clínicas en inglés. El análisis de notas suicidas mediante técnicas de minería de sentimientos es un tema que ayuda en la prevención del suicidio, en la cual se han detectado trabajos que identifican de manera automática emociones (culpa, felicidad, agradecimiento, amor, información, desesperanza e instrucciones) en estas notas usando características de los textos con algoritmos de aprendizaje automático tales como: máquinas de soporte vectorial(Desmet & Hoste, 2013; Luyckx et al, 2012), campos aleatorios condicionales(Liakata et al, 2012) y un clasificador de máxima entropía(Wicentowski & Sydes, 2012). El aspecto lingüístico en el suicidio es de gran importancia.…”
unclassified