Along with the increasing need for rescue robots in disasters such as earthquakes and tsunami, there is an urgent need to develop robotics software for learning and adapting to any environment. A reinforcement learning (RL) system that improves agents' policies for dynamic environments by using a mixture model of Bayesian networks has been proposed, and is effective in quickly adapting to a changing environment. However, the increase in computational complexity requires the use of a high-performance computer for simulated experiments and in the case of limited calculation resources, it becomes necessary to control the computational complexity. In this study, we used an RL profit-sharing method for the agent to learn its policy, and introduced a mixture probability into the RL system to recognize changes in the environment and appropriately improve the agent's policy to adjust to a changing environment. We also introduced a clustering distribution that enables a smaller, suitable selection, while maintaining a variety of mixture probability elements in order to reduce the computational complexity and simultaneously maintain the system's performance. Using our proposed system, the agent successfully learned the policy and efficiently adjusted to the changing environment. Finally, control of the computational complexity was effective, and the decline in effectiveness of the policy improvement was controlled by using our proposed system.