Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
With the continuous operation of check dams, the silting elevation of the whole dam gradually increases. When the silting height is close to the elevation of the broad-crested weir, it will result in a large change in the hydraulic characteristics of the original flow pattern. For subsequent reinforcement work, it is necessary to know how excessive sediment deposition affects the overflow from the broad-crested weir into the spillway. However, few studies about discharge coefficients are available in the case of spillways with sediment. In this paper, the hydraulic characteristics and discharge coefficient of a broad-crested weir whose width is 270 mm are investigated with physical experiments under different siltation heights and discharges. The research shows that: (1) With the increase in siltation height, the water level on the weir decreases and the drop of the flow becomes smaller. The overall flow pattern tends to the open-channel flow pattern. (2) In the same siltation height condition, the water surface profile along the broad-crested weir rises with the increase in discharge, and the surface velocity of the water in front of the weir increases with the increase in discharge. However, in the same discharge condition, the water surface profile along the broad-crested weir decreases with the increase in siltation height, and the surface velocity of the water in front of the weir gradually increases, which reflects that the increase in siltation height improves the overflow capacity of the broad-crested weir. (3) The present empirical formulas for the discharge coefficient have large errors when there is sediment accumulation. Therefore, a new formula for the discharge coefficient with sediment deposition is obtained using experimental data and its maximum relative error is 4.02%, which can provide a theoretical basis for risk elimination and reinforcement work on check dams in the Loess Plateau.
With the continuous operation of check dams, the silting elevation of the whole dam gradually increases. When the silting height is close to the elevation of the broad-crested weir, it will result in a large change in the hydraulic characteristics of the original flow pattern. For subsequent reinforcement work, it is necessary to know how excessive sediment deposition affects the overflow from the broad-crested weir into the spillway. However, few studies about discharge coefficients are available in the case of spillways with sediment. In this paper, the hydraulic characteristics and discharge coefficient of a broad-crested weir whose width is 270 mm are investigated with physical experiments under different siltation heights and discharges. The research shows that: (1) With the increase in siltation height, the water level on the weir decreases and the drop of the flow becomes smaller. The overall flow pattern tends to the open-channel flow pattern. (2) In the same siltation height condition, the water surface profile along the broad-crested weir rises with the increase in discharge, and the surface velocity of the water in front of the weir increases with the increase in discharge. However, in the same discharge condition, the water surface profile along the broad-crested weir decreases with the increase in siltation height, and the surface velocity of the water in front of the weir gradually increases, which reflects that the increase in siltation height improves the overflow capacity of the broad-crested weir. (3) The present empirical formulas for the discharge coefficient have large errors when there is sediment accumulation. Therefore, a new formula for the discharge coefficient with sediment deposition is obtained using experimental data and its maximum relative error is 4.02%, which can provide a theoretical basis for risk elimination and reinforcement work on check dams in the Loess Plateau.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.