Abstract:The main platinum-group element (PGE) occurrence in the Great Dyke of Zimbabwe, the Main Sulfide Zone (MSZ), is a tabular stratabound layer hosted in pyroxenites. A petrographic and silicate composition study across the MSZ at Unki Mine in the Shurugwi Subchamber was conducted to help place some constrains on the origin of the mineralization. The PGE-enriched zone at Unki Mine is a~10 m thick package of rocks ranging from gabbronorites, a chromitite stringer, plagioclase websterite, plagioclase pyroxenite (pegmatitic in one narrow zone), a base metal sulfide zone and it is largely located below the contact of the Mafic and Ultramafic Sequences. Pyroxenes have been partially hydrothermally altered to amphibole and chlorite in most lithologies. In addition, sulfides tend to occur as cumulus phases or as inclusions in all the silicate phases. Two generations of sulfide mineralization likely occurred at Unki Mine with primary sulfides occurring in association with cumulus phases, and the relatively finer-grained, often lath-like, sulfides that occur in association with alteration phases of chlorite and amphibole that were likely formed later during hydrothermal alteration. Chlorite thermometry yields temperatures ranging from 241 to 390 • C, and from 491 to 640 • C, and they are interpreted to be temperatures recording the hydrothermal event(s) of magmatic origin which affected the mineralization at Unki Mine. Two-pyroxene thermometry yields temperatures that range from 850 to 981 • C, and these temperatures are interpreted to indicate a hydrothermal imprint on the minerals that constitute the MSZ.