Word Rain is a development of the classic word cloud. It addresses some of the limitations of word clouds, in particular the lack of a semantically motivated positioning of the words, and the use of font size as a sole indicator of word prominence. Word Rain uses the semantic information encoded in a distributional semantics-based language model – reduced into one dimension – to position the words along the x-axis. Thereby, the horizontal positioning of the words reflects semantic similarity. Font size is still used to signal word prominence, but this signal is supplemented with a bar chart, as well as with the position of the words on the y-axis. We exemplify the use of Word Rain by three concrete visualization tasks, applied on different real-world texts and document collections on climate change. In these case studies, word2vec models, reduced to one dimension with t-SNE, are used to encode semantic similarity, and TF-IDF is used for measuring word prominence. We evaluate the technique further by carrying out domain expert reviews.