2020
DOI: 10.1002/cjs.11540
|View full text |Cite
|
Sign up to set email alerts
|

Empirical likelihood for nonlinear regression models with nonignorable missing responses

Abstract: This article develops three empirical likelihood (EL) approaches to estimate parameters in nonlinear regression models in the presence of nonignorable missing responses. These are based on the inverse probability weighted (IPW) method, the augmented IPW (AIPW) method and the imputation technique. A logistic regression model is adopted to specify the propensity score. Maximum likelihood estimation is used to estimate parameters in the propensity score by combining the idea of importance sampling and imputing es… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2

Citation Types

0
4
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(4 citation statements)
references
References 27 publications
0
4
0
Order By: Relevance
“…However, the Equation () cannot be used due to the missingness of the study variable. According to Yang and Tang [22], and Sang and Kim [23], the following estimating equation can be adopted to obtain the estimator trueθ^$$ \hat{\theta} $$. leftS0false(θfalse)=1n1false∑i=1n1δisδi,xi,yi;θ+1δiE0[s(δi,xi,yi;θ)false|xi]=0,$$ {\displaystyle \begin{array}{ll}{S}_0\left(\theta \right)& =\frac{1}{n_1}\sum \limits_{i=1}^{n_1}\left\{{\delta}_is\left({\delta}_i,{x}_i,{y}_i;\theta \right)\right.\\ {}& \kern1em \left.+\left(1-{\delta}_i\right){E}_0\left[s\right({\delta}_i,{x}_i,{y}_i;\theta \Big)\mid {x}_i\Big]\right\}=0,\end{array}} $$ where E0][|xi=E)(|xi,δi=0$$ {E}_0\left[\cdot \mid {x}_i\right]=E\left(\cdot \mid {x}_i,{\delta}_i=0\right) $$, and alignedtrue{right left}E0sδi,xi,yi;θfalse|xi=Esδi,xi,yi;θfalse|xi,…”
Section: Inference Methods For Non‐probability Samples With Nonignora...mentioning
confidence: 99%
See 3 more Smart Citations
“…However, the Equation () cannot be used due to the missingness of the study variable. According to Yang and Tang [22], and Sang and Kim [23], the following estimating equation can be adopted to obtain the estimator trueθ^$$ \hat{\theta} $$. leftS0false(θfalse)=1n1false∑i=1n1δisδi,xi,yi;θ+1δiE0[s(δi,xi,yi;θ)false|xi]=0,$$ {\displaystyle \begin{array}{ll}{S}_0\left(\theta \right)& =\frac{1}{n_1}\sum \limits_{i=1}^{n_1}\left\{{\delta}_is\left({\delta}_i,{x}_i,{y}_i;\theta \right)\right.\\ {}& \kern1em \left.+\left(1-{\delta}_i\right){E}_0\left[s\right({\delta}_i,{x}_i,{y}_i;\theta \Big)\mid {x}_i\Big]\right\}=0,\end{array}} $$ where E0][|xi=E)(|xi,δi=0$$ {E}_0\left[\cdot \mid {x}_i\right]=E\left(\cdot \mid {x}_i,{\delta}_i=0\right) $$, and alignedtrue{right left}E0sδi,xi,yi;θfalse|xi=Esδi,xi,yi;θfalse|xi,…”
Section: Inference Methods For Non‐probability Samples With Nonignora...mentioning
confidence: 99%
“…Consider a relationship between the response variable yi$$ {y}_i $$ and the covariate vector xi$$ {x}_i $$ as follows: yigoodbreak=f)(xi,βgoodbreak+εi,$$ {y}_i=f\left({x}_i,\beta \right)+{\varepsilon}_i, $$ where βscriptB$$ \beta \in \mathcal{B} $$ is a p‐dimensional vector of unknown parameters, and εi$$ {\varepsilon}_i $$ is the random error, satisfying E)(εi|xi=0$$ E\left({\varepsilon}_i\mid {x}_i\right)=0 $$ and normalVar)(εi|xi=σ2$$ \mathrm{Var}\left({\varepsilon}_i\mid {x}_i\right)={\sigma}^2 $$. According to Yang and Tang [22], β$$ \beta $$ can be estimated by solving the following equation leftZfalse(trueθ^,βfalse)=1n1false∑i=1n1δiπxi,yi;trueθ^zxi,yi,β)(δigoodbreak−<...…”
Section: Inference Methods For Non‐probability Samples With Nonignora...mentioning
confidence: 99%
See 2 more Smart Citations