Proceedings of the Companion Conference on Genetic and Evolutionary Computation 2023
DOI: 10.1145/3583133.3596321
|View full text |Cite
|
Sign up to set email alerts
|

Empirical Loss Landscape Analysis of Neural Network Activation Functions

Abstract: Activation functions play a significant role in neural network design by enabling non-linearity. The choice of activation function was previously shown to influence the properties of the resulting loss landscape. Understanding the relationship between activation functions and loss landscape properties is important for neural architecture and training algorithm design. This study empirically investigates neural network loss landscapes associated with hyperbolic tangent, rectified linear unit, and exponential li… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1
1

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
references
References 29 publications
0
0
0
Order By: Relevance