For practitioners of equity markets, option pricing is a major challenge during high volatility periods and Black-Scholes formula for option pricing is not the proper tool for very deep out-of-the-money options. The Black-Scholes pricing errors are larger in the deeper out-of-the money options relative to the near the-money options, and it's mispricing worsens with increased volatility. Experts opinion is that the Black-Scholes model is not the proper pricing tool in high volatility situations especially for very deep out-of-the-money options. They also argue that prior to the 1987 crash, volatilities were symmetric around zero moneyness, with inthe-money and out-of-the money having higher implied volatilities than at-the-money options. However, after the crash, the call option implied volatilities were decreasing monotonically as the call went deeper into out-of-the-money, while the put option implied volatilities were decreasing monotonically as the put went deeper into in-the-money. Since these findings cannot be explained by the Black-Scholes model and its variations, researchers searched for improved option pricing models. Feedforward networks provide more accurate pricing estimates for the deeper out-of-the money options and handles pricing during high volatility with considerably lower errors for out-of-the-money call and put options. This could be invaluable information for practitioners as option pricing is a major challenge during high volatility periods. In this article a nonparametric method for estimating S&P 100 index option prices using artificial neural networks is presented. To show the value of artificial neural network pricing formulas, Black-Scholes option prices are compared with the network prices against market prices. To illustrate the practical relevance of the network pricing approach, it is applied to the pricing of S&P 100 index options from