Here we demonstrate multiple, complementary approaches by which to tune, extend or narrow the dynamic range of aptamer-based sensors. Specifically, we have employed both distal site mutations and allosteric control to tune the affinity and dynamic range of a fluorescent aptamer beacon. We show that allosteric control, achieved by using a set of easily designed oligonucleotide inhibitors that competes against the folding of the aptamer, allows to rationally and finely tune the affinity of our model aptamer across three orders of magnitude of target concentration with greater precision than that achieved using mutational approaches. Using these methods we generate sets of aptamers varying significantly in target affinity, which we then combined to recreate several of the mechanisms employed by nature to both narrow and broaden the dynamic range of biological receptors. Such ability to finely control the affinity and dynamic range of aptamers may find many applications in synthetic biology, drug delivery and targeted therapies, fields in which aptamers are of rapidly growing importance.