Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
As the demand for more complex circuits increases, so does the duration of creating and testing them. The most time-consuming task in circuit development is notoriously the verification process, primarily due to the large number of simulations (hundreds or even thousands) required to ensure that the circuits adhere to the specifications regardless of the operating conditions. In order to decrease the number of required simulations, various verification algorithms have been proposed over the years, but this comes with an additional issue: the thorough validation of the algorithms. As simulations on real circuits are significantly time-consuming, synthetic circuits can offer precious insights into the capabilities of the verification algorithm. In this paper, we propose a benchmark of synthetic circuits that can be used to exhaustively validate pre-silicon (Pre-Si) verification algorithms. The newly created benchmark consists of 900 synthetic circuits (mathematical functions) with input dimensions (variables) ranging from 2 to 10. We design the benchmark to include functions of varying complexities, reflecting real-world circuit expectations. Eventually, we use this benchmark to evaluate a previously proposed state-of-the-art Pre-Si circuit verification algorithm. We show that this algorithm generally obtains relative verification errors below 2% with fewer than 150 simulations if the circuits have less than six to seven operating conditions. In addition, we demonstrate that some of the most complex circuits in the benchmark pose serious problems to the verification algorithm: the worst case is not found even when 200 simulations are used.
As the demand for more complex circuits increases, so does the duration of creating and testing them. The most time-consuming task in circuit development is notoriously the verification process, primarily due to the large number of simulations (hundreds or even thousands) required to ensure that the circuits adhere to the specifications regardless of the operating conditions. In order to decrease the number of required simulations, various verification algorithms have been proposed over the years, but this comes with an additional issue: the thorough validation of the algorithms. As simulations on real circuits are significantly time-consuming, synthetic circuits can offer precious insights into the capabilities of the verification algorithm. In this paper, we propose a benchmark of synthetic circuits that can be used to exhaustively validate pre-silicon (Pre-Si) verification algorithms. The newly created benchmark consists of 900 synthetic circuits (mathematical functions) with input dimensions (variables) ranging from 2 to 10. We design the benchmark to include functions of varying complexities, reflecting real-world circuit expectations. Eventually, we use this benchmark to evaluate a previously proposed state-of-the-art Pre-Si circuit verification algorithm. We show that this algorithm generally obtains relative verification errors below 2% with fewer than 150 simulations if the circuits have less than six to seven operating conditions. In addition, we demonstrate that some of the most complex circuits in the benchmark pose serious problems to the verification algorithm: the worst case is not found even when 200 simulations are used.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.