This paper describes a methodology for validating a ground-based, hardware-in-theloop, space-robot simulation facility. This facility, called ''SPDM task verification facility,'' is being developed by the Canadian Space Agency for the purpose of verifying the contact dynamics performance of the special purpose dexterous manipulator (SPDM) performing various maintenance tasks on the International Space Station because the real SPDM cannot be physically tested for 3D operations on the ground due to the gravity. The facility uses a high-fidelity SPDM mathematical model, known as the ''truth model'' of the space robot, to drive a hydraulic robot to mimic the space robot performing contact operations. In this research different techniques were studied for practically verifying that the complex simulation facility preserves the dynamics of the truth model of the space robot for space-representative contact robotic tasks. Based upon the study and many years of experience in developing and verifying space robotic systems, a practical validation strategy including detailed test cases was developed along with a set of quantitative criteria for judging the validation test results.