2024
DOI: 10.3390/electronics13061074
|View full text |Cite
|
Sign up to set email alerts
|

Enabling Efficient On-Edge Spiking Neural Network Acceleration with Highly Flexible FPGA Architectures

Samuel López-Asunción,
Pablo Ituero

Abstract: Spiking neural networks (SNNs) promise to perform tasks currently performed by classical artificial neural networks (ANNs) faster, in smaller footprints, and using less energy. Neuromorphic processors are set out to revolutionize computing at a large scale, but the move to edge-computing applications calls for finely-tuned custom implementations to keep pushing towards more efficient systems. To that end, we examined the architectural design space for executing spiking neuron models on FPGA platforms, focusing… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
references
References 29 publications
0
0
0
Order By: Relevance